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Abstract

The original explicit Runge–Kutta–Chebyshev (RKC) method is a stabilized second-order integration method for

pure diffusion problems. Recently, it has been extended in an implicit–explicit manner to also incorporate highly stiff

reaction terms. This implicit–explicit RKC method thus treats diffusion terms explicitly and the highly stiff reaction

terms implicitly. The current paper deals with the incorporation of advection terms for the explicit method, thus aiming

at the implicit–explicit RKC integration of advection–diffusion–reaction equations in a manner that advection and

diffusion terms are treated simultaneously and explicitly and the highly stiff reaction terms implicitly.
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1. Introduction

This paper is devoted to the time integration of stiff, nonlinear advection–diffusion–reaction equations.

Adopting the method of lines approach, we assume that the PDE system with its boundary conditions has

been spatially discretized, and thus we focus our research on ODE systems,

w0ðtÞ ¼ F ðt;wðtÞÞ; t > 0; wð0Þ ¼ w0; ð1Þ

representing semi-discrete advection–diffusion–reaction problems. In most practical applications, the di-

mension of this ODE system is huge, especially for multi-space dimensional PDEs and/or PDE systems with
many reacting species. The huge dimension and the simultaneous occurrence of advection, diffusion and

reaction terms can severely complicate the use of standard implicit integrators leaning on modified Newton
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and (preconditioned iterative) linear solvers. On the other hand, the stiffness induced by diffusion and

reaction terms rules out easy-to-use standard explicit solvers. This delineates our research question: how to

realize easy-to-use, robust and efficient time stepping for this sort of semi-discrete PDEs.
Decoupling the three processes from one another generally simplifies matters. Most simple is to use

operator (time) splitting by which advection, diffusion and reactions can be sequentially and independently

solved with integrators tuned for the three different parts (see [7, Chapter IV]). A drawback is that operator

splitting can give rise to large splitting errors for operators exhibiting slow and fast timescales that nearly

balance. In particular, operator splitting is not exact for steady states which is a disadvantage for transient

problems running into steady state. In this respect, decoupling through the implicit–explicit (IMEX)

approach is more subtle and preserves transient balances.

In [18], we have proposed a Runge–Kutta–Chebyshev (RKC) method of the IMEX type treating mod-
estly stiff diffusion terms explicitly and highly stiff reaction terms giving rise to real eigenvalues implicitly. The

explicit method closely resembles the first RKCmethod due to van der Houwen and Sommeijer [6]. Here, we

examine our explicit method with the aim to also include advection terms. Our final goal is an efficient

implicit–explicit RKC integration of advection–diffusion–reaction equations in a manner that advection and

diffusion terms are treated simultaneously and explicitly and the highly stiff reaction terms implicitly.
2. The explicit RKC method

Historically, the principal goal when constructing Runge–Kutta methods was to achieve the highest

order possible with a given number of stages s. Stabilized methods like RKC are different in that only a few

stages are used to achieve a usually low order whereas additional stages are exploited to increase the region

of absolute stability, depending on the particular application. Originally, the RKC method was intended for

semi-discrete parabolic PDE problems. Correspondingly, the original method is stable on a strip containing

a long segment of the negative real axis. The wider the strip, the greater the applicability of the method, but

the most important characteristic of the formula is the length of the segment, the real stability boundary,
which increases quadratically with s.

Let wn denote the numerical approximation to the exact solution wðtÞ of the semi-discrete system

w0ðtÞ ¼ F ðt;wðtÞÞ at t ¼ tn and let s be the step size in the current step from tn to tnþ1. The second-order

explicit RKC formula has the form

W0 ¼ wn;

W1 ¼ W0 þ ~l1sF0;

Wj ¼ ð1� lj � mjÞW0 þ ljWj�1 þ mjWj�2 þ ~ljsFj�1 þ ~cjsF0;

wnþ1 ¼ Ws;

ð2:1Þ

where j ¼ 2; . . . ; s. The Wk are internal vectors and Fk denotes F ðtn þ cks;WkÞ. All coefficients are available in

analytical form for arbitrary sP 2:

~l1 ¼ b1x1 and for j ¼ 2; . . . ; s;

lj ¼
2bjx0

bj�1

; mj ¼
�bj
bj�2

; ~lj ¼
2bjx1

bj�1

; ~cj ¼ �aj�1~lj

ð2:2Þ

for which the aj; bj; cj and x0;x1 are given below. Note the recursive form of Wj by which only five arrays of

storage are needed for all sP 2.

When applied to the scalar stability test equation w0ðtÞ ¼ kwðtÞ, we get at each stage a relation

Wj ¼ PjðzÞW0 with z ¼ sk and PjðzÞ a polynomial of degree j in z with PsðzÞ as stability function. Formula
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Fig. 1. Stability regions for the second-order shifted Chebyshev polynomial P5 with damping parameter e small: left e ¼ 0, right

e ¼ 2=13.
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(2.1) has in fact been derived from a particular set of functions PjðzÞ (06 j6 s) satisfying three design

criteria: (i) nearly optimal step-by-step stability of PsðzÞ for parabolic problems, (ii) internal stability, i.e.,

controlled round-off accumulation in a single step for s large and (iii) second-order consistency of PjðcjzÞ
with respect to ecjz for j ¼ 2; . . . ; s. Criterion (iii) automatically implies second-order consistency of all

Wj ð26 j6 sÞ at t ¼ tn þ cjs for general problems w0ðtÞ ¼ F ðt;wðtÞÞ. The first-stage formula is necessarily

first-order consistent being forward Euler with step size ~l1s.
The chosen functions Pj are based on the first kind Chebyshev polynomials TjðxÞ satisfying the three-term

recursion

TjðxÞ ¼ 2xTj�1ðxÞ � Tj�2ðxÞ; j ¼ 2; 3; . . . ; s; ð2:3Þ

where T0ðxÞ ¼ 1, T1ðxÞ ¼ x. They are given by

PjðzÞ ¼ aj þ bjTjðx0 þ x1zÞ; aj ¼ 1� bjTjðx0Þ; ð2:4Þ

where 1

b0 ¼ b2; b1 ¼ 1=x0; bj ¼ T 00
j ðx0Þ=ðT 0

j ðx0ÞÞ2; j ¼ 2; . . . ; s; ð2:5Þ

with

x0 ¼ 1þ �=s2; x1 ¼ T 0
s ðx0Þ=T 00

s ðx0Þ: ð2:6Þ

Here �P 0 is free and is called a damping parameter as e > 0 gives values of the stability function PsðzÞ
strictly less than one in the interior of the real stability interval. Later on we will exploit the freedom we

have with e to include advection terms.

Using T 0
s ð1Þ ¼ s2; T 00

s ð1Þ ¼ 1
3
s2ðs2 � 1Þ and T 000

s ð1Þ ¼ 1
15
s2ðs2 � 1Þðs2 � 4Þ, for e small the stability boundary,

denoted by bðsÞ, can be seen to satisfy 2

bðsÞ � 2x0T 00
s ðx0Þ

T 0
s ðx0Þ

� 2

3
ðs2 � 1Þ 1

�
� 2

15
�

�
: ð2:7Þ

Taking � ¼ 2=13, as in [7,18], we get approximately 0:336 PsðzÞ6 0:95 in most of the interior of the stability

interval and a reduction in the bðsÞ of about 2% to bðsÞ � 0:65ðs2 � 1Þ compared to the undamped case

(� ¼ 0). Fig. 1 illustrates the stability region S ¼ fz 2 C : jPsðzÞj6 1g for P5ðzÞ with and without damping.

For larger values of s similar regions exist, except more stretched to the left along the negative real line.
1 The choice for parameter b1 differs from the choice b1 ¼ b2 made in earlier RKC papers. The current choice was made in [18] to

enable the IMEX form.
2 With e small we actually mean e=s2 � 1. Likewise, if this does not hold we say that e is large.
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Finally, by expanding PjðzÞ for z ! 0 it follows that the abscissa cj are given by cj ¼ bjx1T 0
j ðx0Þ and thus

c0 ¼ 0; c1 ¼ c2; cj ¼
T 0
s ðx0Þ

T 00
s ðx0Þ

T 00
j ðx0Þ
T 0
j ðx0Þ

; cs ¼ 1: ð2:8Þ

For e small, we then get cj � ðj2 � 1Þ=ðs2 � 1Þ for 26 j6 s� 1.

Remark 2.1. For � ¼ 0 we have

PsðzÞ ¼
2

3
þ 1

3s2
þ 1

3

�
� 1

3s2

�
Ts 1

�
þ 3z
s2 � 1

�
with bðsÞ � 2

3
ðs2 � 1Þ:

This polynomial is due to Bakker, see [7], and generates about 80% of the optimal stability interval length

for second-order polynomials, being bðsÞ � 0:814s2. Within most of the interior of the stability interval,

PsðzÞ alternates between � 1=3 and 1.

Remark 2.2. The brief introduction in this section to RKC follows [18]. Related stabilized explicit methods

are the ROCK [1,2] and DUMKA methods [11,12]. These have close to optimal real stability boundaries

and can possess a higher order (up to order 4). The higher order makes them less amenable for the IMEX

extension due to the many IMEX order conditions at higher order. Numerical comparisons between the

second-order RKC code from [16] (with still b1 ¼ b2) and a fourth order ROCK code can be found in [2,7].

The IMEX version of this code has been used in [18]. More references are found in [7].

Remark 2.3. Methods like RKC, ROCK and DUMKA are special explicit Runge–Kutta methods stabi-

lized along the negative real line and are mainly meant for the explicit time integration of parabolic

problems. The stabilization renders them much more efficient for these problems than common explicit

Runge–Kutta methods. Of course, in spite of the stabilization, they are explicit so that for a fine enough
spatial discretization the stiffness from diffusion will become too large and efficiency too low. This might

happen for example with adaptive grids with very strong local refinements.
Remark 2.4. Suppose system (1) can be split as

w0ðtÞ ¼ FEðt;wðtÞÞ þ FIðt;wðtÞÞ; ð2:9Þ

where FI is too stiff to be treated efficiently by (2.1). The IMEX extension of (2.1) from [18] overcomes this

for stiff terms FI possessing a Jacobian matrix with a real spectrum. For problem (2.9) it reads, with j
running from 2 to s,

W0 ¼ wn;

W1 ¼ W0 þ ~l1sFE;0 þ ~l1sFI;1;

Wj ¼ ð1� lj � mjÞW0 þ ljWj�1 þ mjWj�2 þ ~ljsFE;j�1 þ ~cjsFE;0

þ ½~cj � ð1� lj � mjÞ~l1�sFI;0 � mj~l1sFI;j�2 þ ~l1sFI;j;

wnþ1 ¼ Ws;

ð2:10Þ

where FE;j denotes FEðtn þ cjs;WjÞ, etc. As long as the Jacobian of FI has a real spectrum, this method is

unconditionally stable for the implicitly treated operator FI and the stability is determined by the explicitly

treated operator FE, completely similar as we discussed above for method (2.1). The IMEX extension in-
troduces a term to the Oðs3Þ local truncation error which is proportional to s2=ðs2 � 1Þ. For s large this does
no harm, otherwise accuracy reduction might be faced. See the analysis of [18] for details.
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So in actual application the IMEX method is applied in the same manner as (2.1), except that we now

encounter at each stage an implicit Euler type computation Wj ¼ W � þ ~l1sFIðtn þ cjs;WjÞ. If this implicit

computation is cheap, as, e.g., with stiff chemical reactions giving rise to small sized systems decoupled over
space grids, the IMEX form is readily substantially more efficient than the fully explicit method applied to

(2.9). In [18] only highly stiff diffusion–reaction problems were discussed. The adaptation of the explicit

method towards advection–diffusion problems extends naturally to highly stiff advection–diffusion–reaction

problems and the IMEX method.
3. The link to advection–diffusion problems

The link to advection–diffusion problems is made through the damping parameter e. Fig. 1 illustrates

that with a small e > 0 the stability region S contains a narrow strip along the negative real line. By in-

creasing e the strip becomes wider, as illustrated in Fig. 2 which shows S for P5 for e ¼ 5 and e ¼ 1.

Obviously, by widening the strip eigenvalues with larger imaginary parts coming from advection terms can

be put in. On the other hand, by increasing e the strip also becomes shorter, meaning that less eigenvalues

with large negative real part can be put in.

3.1. The limit case e ! 1

There exists a surprising relation with a second-order scheme which in the numerical ODE field has been

examined in connection with contractivity [9,10] and in the numerical hyperbolic PDE field with respect to

the TVD (Total Variation Diminishing) and SSP (Strong Stability Preserving) properties [4,15,17]. To show

this we first examine the stability function (see (2.4))

PsðzÞ ¼ 1þ T 00
s ðx0Þ

ðT 0
s ðx0ÞÞ2

Tsðx0ð þ x1zÞ � Tsðx0ÞÞ ð3:1Þ

for the limit case e ! 1 (only for sP 3 because for s ¼ 2 there is no dependence on e). For that purpose,
we use the representation

TjðxÞ ¼ coshðjacoshðxÞÞ ¼ 1
2
ujð þ u�jÞ; u ¼ xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
;

which holds due to acoshðxÞ ¼ lnðuÞ; xP 1. Thus we have

TjðxÞ � 2j�1xj; T 0
j ðxÞ � j2j�1xj�1; T 00

j ðxÞ � jðj� 1Þ2j�1xj�2

for x � 1. Inserting these asymptotic values for j ¼ s into (3.1) gives for e ! 1 the polynomial

KsðzÞ ¼
1

s
þ s� 1

s
1
�

þ z
s� 1

�s
: ð3:2Þ
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Fig. 2. Stability regions for the second-order shifted Chebyshev polynomial P5 with damping parameter e large: left e ¼ 5, right e ¼ 1.
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The transition from Ps to Ks is quite surprising in the sense that Ks is precisely the second-order stability

function obtained in [9] in a study on absolute monotonicity, and Ks is the stability function of the second-

order explicit Runge–Kutta method

W0 ¼ wn;

Wj ¼ Wj�1 þ
1

s� 1
sF tn

�
þ j� 1

s� 1
s;Wj�1

�
; j ¼ 1; . . . ; s;

wnþ1 ¼
1

s
wn þ

s� 1

s
Ws

ð3:3Þ

which has been examined in [10] in a nonlinear contractivity study related to [9]. Furthermore, being based
on a cyclic application of forward Euler, this method belongs to the class of TVD and SSP Runge–Kutta

methods for hyperbolic problems [4,15,17].

So for linear problems the limit of our explicit RKC method (2.1) for e ! 1 is just method (3.3) as they

share their stability function. They are also identical for s ¼ 2 in the nonlinear case, being the explicit

trapezoidal rule. For sP 3, the limit is then different though and given by

W1 ¼ wn þ s�F ðtn;wnÞ;

W2 ¼ 1
2
ðwn þ W1Þ þ 1

2
s�F ðtn þ s�;W1Þ and for j ¼ 3; . . . ; s;

Wj ¼
1

j
W0 �

j� 1

jðj� 2ÞW1 þ
ðj� 1Þ2

jðj� 2Þ Wj�1

�
þ s�F ðtn þ ðj� 2Þs�;Wj�1Þ

�
;

ð3:4Þ

where s� ¼ s=ðs� 1Þ and wnþ1 ¼ Ws. By adjusting the parameter choice (2.5) to

bj ¼ 1=Tjðx0Þ ð06 j6 s� 1Þ; bs ¼ T 00
s ðx0Þ=T 0

s ðx0Þ; ð3:5Þ

the RKC formula (2.1) changes into

W0 ¼ wn; W1 ¼ wn þ ~l1sF ðtn;wnÞ;

Wj ¼ mjWj�2 þ ljWj�1 þ ~ljsF ðtn þ cj�1s;Wj�1Þ; j ¼ 2; . . . ; s� 1;

wnþ1 ¼ ð1� ls � msÞwn þ msWs�2 þ lsWs�1 þ ~lssF ðtn þ cs�1s;Ws�1Þ;

ð3:6Þ

which does have (3.3) as limit for e ! 1. This formula maintains the stability function (3.1) and also the

second-order consistency (although no longer at the internal stages). So for e large (3.6) seems to be

preferable for application to advection–diffusion problems.

Yet we do discard (3.6) since it has bad abscissae values cj for e small and we wish to use one and the

same formula for all e > 0 and all sP 2. For e small we get, for j ¼ 1; . . . ; s� 1,

cj ¼
T 0
s ðx0ÞT 0

j ðx0Þ
T 00
s ðx0ÞTjðx0Þ

� 3j2

s2 � 1
;

and thus for e small the values tn þ cjs can be far outside the time step interval ½tn; tnþ1� for j close to s. This
can be rather detrimental to accuracy and this is what we actually have observed for a test problem with

time-dependent Dirichlet boundary conditions. Such abscissae may also be problematic in situations where
functions beyond a certain point of time are not defined.

An elementary calculation reveals that with the original parameter choice (2.5) we have abscissa satis-

fying 0 < c1 ¼ c2 < c3 < � � � < cj < � � � < cs ¼ 1 for all eP 0. Since we consider this important we do prefer

the original formula (2.1) for adjustment to advection–diffusion problems.
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3.2. Fixing the damping parameter

The real stability boundary of (3.2) satisfies

bðsÞ � 2ðs� 1Þ ðexact for even sÞ: ð3:7Þ

Hence the quadratic increase of bðsÞ with s for e small turns linear for e ! 1, showing that we rapidly lose

stability for real negative eigenvalues if we take e larger and larger. On the other hand, we then gain stability

for eigenvalues with imaginary parts as already illustrated in Fig. 2 for s ¼ 5. For increasing s, the stability
region of (3.2) becomes circular with center point 1� s and radius s� 1, so purely imaginary eigenvalues

are excluded. This means that strongly advection-dominated advection–diffusion problems solved with

central differencing practically are out of reach. For such problems upwinding is to be preferred and this is

even feasible in the pure advection case, see Section 3.3.
Because we do not wish to give up the quadratic increase with s of the real stability boundary (2.7) for

diffusion-dominated problems, the damping parameter e cannot be chosen extremely large. In the re-

mainder of the paper, we fix e to the value 10, unless noted otherwise. With e ¼ 10, the quadratic behaviour

is maintained, viz,

bðsÞ � 0:34ðs2 � 1Þ

for s large enough and e still is large enough for including advection terms. Compared to the real stability

boundary for e ¼ 0 we lose a factor two, approximately, which means a factor
ffiffiffi
2

p
for the number of

function evaluations for strongly diffusion-dominated problems. In an actual implementation, we need an

expression for bðsÞ for all sP 2. The numerically determined stability boundaries are accurately (lower

bound) approximated by

bðsÞ ¼
2; s ¼ 2;

ðs2 � 1Þ 0:340þ 0:189ð2=ðs� 1ÞÞ1:3
� �

; sP 3:

(
ð3:8Þ
3.3. The pure advection or diffusion case

The pure advection case is of interest in its own. Consider the test model ut þ aux ¼ 0, assume periodicity

in space with period one, and apply Fourier–von Neuman analysis for the third-order upwind-biased
advection scheme. With CFL number m ¼ sjaj=h we then get the eigenvalues [7]

z ¼ � 4

3
m sin4ðxÞ � i

3
m sinð2xÞ 4ð � cosð2xÞÞ; 06x6 p:

For the RKC stability function (3.1) with e ¼ 10 and the stability function (3.2), Fig. 3 shows plots of
accurate estimates of the CFL limits mðsÞ guaranteeing all z 2 S. For s ¼ 2 they coincide and we have
0 5 10 15 20 25
0

1

2

3

4

Fig. 3. CFL limits for the stability functions (3.2) (solid line) and (3.1) with e ¼ 10 (fat solid line) for s ¼ 2; . . . ; 25.
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mð2Þ � 0:87. We see that for (3.2) the CFL limit mðsÞ slowly increases with s. Clearly, the scaled value mðsÞ=s
is maximal for s ¼ 2, implying that in the pure advection case this is the best choice with respect to efficiency

(under the assumption that the accuracy is practically independent of s which is true). The stability function
(3.1) with e ¼ 10 gives somewhat smaller CFL limits, as expected. In this case, mðsÞ behaves constant for
increasing s.

Observe that these CFL limits extend to the m-dimensional scalar test model

ut þ
Xm
k¼1

akuxk ¼ 0 ð3:9Þ

by summing up. For (3.1) with e ¼ 10 we then get

Xm
k¼1

sjakj
hk

6 mðsÞ ¼
4�s
2
0:87þ s�2

2
1:40; 26 s6 4;

9�s
5
1:40þ s�4

5
1:70; 46 s6 9;

1:70; sP 9;

8<
: ð3:10Þ

where hk is the uniform grid distance in direction k and mðsÞ now stands for an accurate lower bound of the

CFL limit depicted in Fig. 3. Needless to say that similar results can be obtained for the standard first-order

and second-order upwind discretization. In the pure advection case, the most efficient stable step size thus

corresponds with the CFL limit for s ¼ 2 and therefore it is advisable to restrict s to be stable for s ¼ 2. 3

Remark 3.1. The stability regions of the RKC formulas do not include part of the imaginary axis. This

means that semi-discrete advection problems with purely imaginary eigenvalues, as obtained from central

differencing, cannot be integrated efficiently with RKC. As shown above, this disadvantage is overcome

with a little amount of artificial diffusion as generated by the third-order upwind-biased scheme.

In the pure diffusion case, the situation is entirely different. With regard to stability, we then put no

bound on s and s due the quadratic growth. In the pure diffusion case, we thus can simply choose the

minimal s satisfying the stability condition srðF 0ðt;wÞÞ6 bðsÞ, and this can be done for any given s selected
on the basis of accuracy considerations, e.g., by local error control as in the code from [16] (r denotes here

the spectral radius and F 0ðt;wÞ is the Jacobian matrix).
To sum up, finding optimal critical step sizes for stability in the pure advection and the pure diffusion test

model case is clear. However, for the mixed advection–diffusion test model case the situation is unclear and

numerical stability analysis appears in general to be much more cumbersome.
4. Critical step sizes for advection–diffusion problems

Method of lines solvers for semi-discrete systems (1) are normally provided with variable step size
control based on local error estimates. With such estimates one has a first tool at hand to timely prevent the

onset of instabilities. The crucial question is can the step size control be trusted for this additional task. In

the numerical ODE field research has been carried out in this direction under the names automatic stiffness

detection and step-control stability (see [5, Section 4.2] and [14, Section 6.3]).

For conditionally stable solvers, it is natural to prescribe estimates of critical limits derived from stability

analysis as maxima for the automatically chosen step sizes, provided they can be found with reasonable
3 For s ¼ 2 formula (2.1) becomes wnþ1 ¼ wn þ 1
2
sF ðtn;wnÞ þ 1

2
sF ðtnþ1;wn þ sF ðtn;wnÞÞ, that is, the classical explicit trapezoidal rule

which can be used profitably when combined with third-order upwind biased advection discretization, both limited and unlimited [7].
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accuracy. For advection–diffusion problems, an elegant approach is due to Wesseling (see [19] and [20,

Chapter V]). For standard spatial discretizations of the m-dimensional scalar model

ut þ
Xm
k¼1

akuxk ¼ d
Xm
k¼1

uxkxk ; ð4:1Þ

Wesseling gives step size conditions guaranteeing eigenvalues emerging from von Neumann stability

analysis to lie inside geometric figures like squares, ellipses, half ellipses and ovals. For the integration

method under consideration, one then has to fit an appropriate figure inside the stability region S and to

use the geometric step size condition to estimate the critical step size. For the RKC method ellipses and

ovals seem suitable. Fig. 4 shows regions S with an inscribed ellipse and oval for s ¼ 6 and e ¼ 0:1, 1, 10.
The numbers a; b represent the vertical half axis and the horizontal axis, respectively, the latter being equal

to the real stability boundary (2.7). Observe the decrease of b and increase of a for increasing e and also that
a is smaller for the ovals. On the other hand, the ovals give a better fit near the origin which is important for

advection-dominated problems. In the remainder, we therefore focus on the oval.

4.1. Oval step size conditions

Assume second-order central differencing for diffusion and the j-scheme [19,20] for advection with grid

sizes hk ð16 k6mÞ. For j ¼ 1, )1 and 1/3, the j-scheme yields, respectively, the second-order central, the
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second-order upwind and the third-order upwind-biased advection scheme. The parameterization of these

standard schemes into the single j-scheme is due to [13]. We consider the oval with center point ð�b=2; 0Þ
and half-axes a and b=2, i.e.,

x
b=2

�
þ 1

�2

þ y
a

� �4
¼ 1:

As in Fig. 4, we associate b with the real stability boundary bðsÞ. We then have one step size condition that

emerges from the (artificial) diffusion terms, and one that emerges from the advection terms [19,20]. The

(artificial) diffusion step size condition is of course the familiar condition

s6
1

2d
Pm

k¼1 h
�2
k ð2þ ð1� jÞPkÞ

bðsÞ; ð4:2Þ

where Pk ¼ jakjhk=d is a mesh P�eclet number. We emphasize that its violation will rapidly give instability for

high-frequency error components. A condition like this thus is always imposed upon the RKC method and

its use is not new. New is the advection step size condition taken from [20] which reads

s6 q1
4da4ðsÞ
bðsÞ

� �1=3
,Xm

k¼1

a4k
h2k

� �1=3

; ð4:3Þ

where the parameter q1 depends on the choice of j. 4 For the popular j-values, q1 � 0:635 for j ¼ 1=3,
q1 ¼ 1 for j ¼ 1, and q1 � 0:323 for j ¼ �1. This condition generally will be conservative because the

stability region S is not an oval and for the derivation of (4.3) the Cauchy–Schwarz inequality is used
which is normally not sharp. But the proportionality with d1=3 makes it interesting for small d, although it

becomes meaningless for truly zero diffusion. With q1 � 0:635, this advection condition is also applicable

when the advection terms are discretized with the fourth-order central scheme [20].

Remark 4.1. In [20], one may choose between (4.3) and the CFL condition

s6 2q2
a2ðsÞ
bðsÞ

�Xm
k¼1

jakj
hk

; ð4:4Þ

where q2 � 0:265 for j ¼ 1=3 and q2 � 0:317 for j ¼ �1. For j ¼ 1, the constant q2 ¼ 0, hence this con-

dition is of no use for the second-order central advection scheme. Because the diffusion coefficient d is now

absent, this CFL condition seems attractive for strongly advection-dominated problems when using up-

winding. However, it turns out that the coefficient a2ðsÞ=bðsÞ decreases with s and readily becomes too small

for practical purposes. See the right plot of Fig. 5 where for comparison also the plots for e ¼ 0:1, 1, 3 have

been given. For this reason, we discard this second oval condition. On the other hand, in Section 4.2 we will
see that for s ¼ 2 we have a2=b � 1, giving 0:53 as CFL limit for j ¼ 1=3 when using condition (4.4). The

true critical CFL constant in this case equals approximately 0.87 (see Fig. 3). Hence for s ¼ 2 and j ¼ 1=3
the oval estimate (4.4) is quite acceptable.

4.2. Optimal ovals

Since we prescribe the horizontal axis b by (3.8) we only have to compute the associated optimal half-

axis aðsÞ. Estimates for the optimal values for aðsÞ have been determined numerically. For s ¼ 2, the
4 This inequality is the corrected form of inequality (5.61) in [20], which contains an error. There the summation and taking the 1/3

power have been interchanged.
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optimal oval fit gives að2Þ �
ffiffiffi
2

p
and thus the ratio a4ðsÞ=bðsÞ needed in condition (4.3) equals 2,

approximately. For sP 3, the semi-axis aðsÞ is an oscillating function of s with maxima for s even and

minima for s odd. In the remainder, we therefore restrict ourselves to even s. Further, for even s sufficiently

large, aðsÞ becomes proportional to
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

4
p

and thus the ratio a4ðsÞ=bðsÞ is then independent of s. The left
plot of Fig. 5 shows this ratio. For comparison also the plots for e ¼ 0:1, 1, 3 have been given.

For the actual implementation, we will use the following lower bound for s even,

a4ðsÞ
bðsÞ �

2; s ¼ 2;
4ð6� sÞ þ 6:15ðs� 4Þ; s ¼ 4; 6;
6:15ð10� sÞ=2þ 15:5ðs� 6Þ=4; s ¼ 8; 10;
15:5; s ¼ 10; 12; . . .

8>><
>>:

Hence as maximum we take 15.5 which corresponds with s ¼ 10. For larger values of s the slope in the

curve becomes too small.

Remark 4.2. We will illustrate the oval conditions (4.2), (4.3) for the 1D model ut þ aux ¼ duxx, using third-

order upwind biased discretization. In terms of the CFL number sjaj=h and the mesh P�eclet number

P ¼ hjaj=d we have

sjaj
h

6 min q1 4
a4ðsÞ
bðsÞ

1

P

� �1=3

;
P

2ð2þ ð1� jÞP Þ bðsÞ
 !

; ð4:5Þ

with q1 ¼ 0:635; j ¼ 1=3. Fig. 6 plots the CFL limits based on the oval estimates for the P�eclet numbers

P ¼ 2, 10, 100. For comparison also the associated true values are shown for the ovals (thus assuming that
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Fig. 6. Third-order upwind-biased advection discretization: CFL limits for s ¼ 2; 4; . . . 20, for the P�eclet numbers P ¼ 2 (solid), 10

(dashed), 100 (dash-dotted).
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the stability regions are ovals) and for the stability regions themselves. The oval estimates are indeed

conservative. On the other hand, the exact oval limits are rather good, especially for the advection-dom-

inated case. This is in line with the observation that the ovals do have a good fit with the stability regions
near the origin (see Fig. 4, case e ¼ 10).

4.3. Critical step size selection

Next suppose we are given a trial step size s� obtained from a local error estimation procedure. With this

trial step size at hand, we have the possibility to check the two stability inequalities (4.2) and (4.3) and to

adjust s� to a new step size s to satisfy both inequalities. Simultaneously, the number of stages s with s even
is to be adjusted such that the number of stages needed to satisfy the diffusion condition (4.2) is greater than
or equal to the number of stages needed to satisfy the advection condition (4.3). This adjustment underlies

the fact that the best strategy for advection is to minimize s and thus with respect to stability it makes no

sense to spend more evaluations on advection than required by diffusion. 5

Let w1 and w2 contain the given problem parameters, i.e.,

w1 ¼
1

2d
P

h�2
k ð2þ ð1� jÞPkÞ

; w2 ¼
4dq31P

ða4k=h2kÞ
1=3

� �3 : ð4:6Þ

Then the following test is carried out:

1. If s� 6 2w1 we put s ¼ 2, s ¼ minðs�; ð2w2Þ
1=3Þ and are done.

2. Put s ¼ minðs�; ð15:5w2Þ
1=3Þ. If s6 2w1 we put s ¼ 2 and are done.

3. Determine sd P 4 such that s6 bðsdÞw1 to satisfy (4.2).

4. Determine sa P 4 such that s6 a4ðsaÞ=bðsaÞð Þw2ð Þ1=3 to satisfy (4.3).

5. If sa 6 sd we put s ¼ sd and are done. Otherwise s :¼ 0:8s and we repeat steps 3–5.

Remark 4.3. The above stability analysis is based on the test model (4.1). Nonlinear advection–diffusion

systems such as ut þr � ðauÞ ¼ r � ðDruÞ with a ¼ aðuÞ and D ¼ DðuÞ (positive diagonal), can be dealt

with by applying the heuristic approach of ‘freezing’ as is customary in practice with von Neumann stability
analysis. For the velocities ak, we then insert maximal values in w1;w2, and for the diffusion coefficient d a

minimal value is required in w2 and a maximal value in w1.

One may also encounter pure advection coupled to mixed advection–diffusion or pure diffusion. Because

for pure advection the oval approach is not applicable, one then should use the CFL condition (3.10) for

the pure advection part of the problem. Thus, after the above oval test giving s as new step size and s as the
new number of stages, the step size adjustment

s :¼ min s; mðsÞ
Xm
k¼1

jakj
hk

, !

is then to be carried out. If this adjustment is substantial one should iterate between the two tests to also

adjust s. Recall that for pure advection alone the most efficient choice for the number of stages is s ¼ 2.
5 Standard for RKC is to impose the stability inequality (4.2) in the form of the more general condition srðF 0ðt;wÞÞ6bðsÞ by only

adjusting s (see [16]). Inequality (4.2) must be satisfied since its violation will amplify high-frequency error components with the

possibility of overflow within a single integration step.
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5. Numerical illustrations

We will present numerical results obtained for two 3D test problems. In Section 5.1 a nonlinear
Burgers type advection–diffusion problem is solved and in Section 5.2 we deal with an advection–diffu-

sion–reaction problem with stiff reaction terms. For the advection–diffusion problem a modified version of

the RKC solver from [16] has been used and for the second problem an IMEX extension thereof as

discussed in Remark 2.4. Both of these are test solvers and not yet of the mature software level as the

code from [16].

RKC is based on the second-order explicit scheme (2.1). The solver uses the damping parameter

value e ¼ 10 instead of the standard value e ¼ 2=13 and expression (3.8) for the real stability boundary.

RKC works as most other variable step size ODE solvers. A difference is that at each time step it
minimizes the number of stages s so as to satisfy the stability condition sr6 bðsÞ, where r is a spectral

radius estimate for diffusion problems, such as the inverse of expression w1 given in (4.6) coming from

the first oval condition (4.2) which was used here. Variable step sizes are based on a local error per step

criterion [14].

RKC has been used in two ways. (i) On the fly, that is, in the same way as for pure diffusion problems

using only the first oval condition s6w1bðsÞ and not being protected to instability caused by advection

terms and (ii) also protected to instability caused by advection terms through the additional oval condition

(4.3). In case (ii), the step size strategy of Section 4.3 has been used.
Once w1;w2 and Tol have been prescribed the required step size and stage tests go automatically.

Standard the Euclidean norm is used for the local error test. Of course, for a given value of Tol the

maximum norm would more timely signal the onset of instabilities.
5.1. A 3D Burgers type problem

We consider the three-space dimensional problem

ut þ
1

2
ðu2Þx þ

3

2
u

�
� 1

2
u2
�

y

þ 3

2
u

�
� 1

2
u2
�

z

¼ dDu ð5:1Þ

in the unit cube on the time interval ½0; 1�. This problem is a nice test model for nonlinear advection–dif-

fusion and is derived from the 3D Burgers equation [3]. It admits the exact wave front solution

uðx; y; z; tÞ ¼ 1� 1

2
1
�

þ eð�xþyþz�3t=4Þ=ð4dÞ��1 ð5:2Þ

which moves skew in the cube. This exact solution has been used to prescribe Dirichlet boundary condi-

tions.

We have conservatively discretized on a uniform space grid with third-order upwind-biased for advec-

tion and second-order central for diffusion, using the grid sizes h ¼ 1=50, 1/100, 1/200 and the diffusion

coefficients d ¼ 10�2; 10�3; 10�4 (nine cases were tested). The true solution varies between 0.5 and 1.0. So

freezing coefficients yields as maximal velocities for the stability test model (4.1) the values

a1 ¼ a2 ¼ a3 ¼ 1, which can now be used to estimate the maximal scaled step sizes s=s imposed by the oval
conditions (4.2) and (4.3). Fig. 7 shows these scaled maxima for six test cases for the even numbers of stages

s ¼ 2; 4; . . . ; 20. The point where the o and �markers intersect determines the optimal oval-based values for

s and s. The step size strategy of Section 4.3 should determine these oval-based values automatically (in

close approximation), and has done this right in the runs discussed below. Note that the advection oval

condition predicts s ¼ 2 already for d ¼ 10�3 on all three grids (advection-dominated). Of course the same

happens for d ¼ 10�4 (not shown here).
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5.1.1. Test results

The above described solver RKC has been applied with values of Tol ranging from 10�1 to 10�4 (smaller

values are less appropriate since the order is only two) over the time interval ½0; 1�. On the fly, that is

without the oval condition, it consistently (all nine test cases) ran into instability for Tol ¼ 10�1, so here the

local error control failed to timely detect the onset of instabilities. For Tol ¼ 10�2, it consistently produced

stable and accurate results, but occasionally with somewhat more step rejections than normal (see Table 1).

For Tol ¼ 10�3 and 10�4 all on the fly integrations were successful too and now with very few step re-

jections. Summarizing, on the fly the solver works normal and efficient and for the current problem there

appears to be little need to safeguard its control by means of the oval condition.
Of course, imposing this condition is safer. Indeed, then the instabilities for Tol ¼ 10�1 do not occur and

the solver automatically selects the oval-based step sizes and numbers of stages predicted in Fig. 7, but with

a higher expense in integration steps and function calls. To illustrate this, we have collected integration data

and L2-errors at time t ¼ 1 in Tables 1 and 2 for, respectively, Tol ¼ 10�2 and 10�3 (being typical values for

a second-order solver like RKC). The results are given for the 100	 100	 100 grid (results on the two other

grids are similar). The entry steps represents the accepted plus the rejected integration steps. The errors are
Table 1

Problem (5.1)

Tol ¼ 10�2; h ¼ 10�2 Steps (rej) F-evals smax L2-error

d ¼ 10�2: On the fly 30 (4) 413 25 0.24	 10�3

Oval condition 150 (0) 899 6 0.46	 10�4

d ¼ 10�3: On the fly 133 (14) 508 9 0.37	 10�2

Oval condition 327 (0) 656 2 0.38	 10�2

d ¼ 10�4: On the fly 153 (1) 476 5 0.93	 10�2

Oval condition 593 (0) 1188 2 0.59	 10�2

Results for Tol ¼ 10�2.



Table 2

Problem (5.1)

Tol ¼ 10�3; h ¼ 10�2 Steps (rej) F-evals smax L2-error

d ¼ 10�2: On the fly 29 (2) 390 19 0.27	 10�3

Oval condition 150 (0) 899 6 0.46	 10�4

d ¼ 10�3: On the fly 120 (1) 478 5 0.36	 10�2

Oval condition 327 (0) 656 2 0.38	 10�2

d ¼ 10�4: On the fly 166 (1) 498 3 0.57	 10�2

Oval condition 593 (0) 1188 2 0.59	 10�2

Results for Tol ¼ 10�3.
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the full PDE errors and are strongly dominated by their spatial parts. Hence, they are not to be understood

as ODE time integration errors (often these are smaller than the spatial errors).

5.2. A 3D advection–diffusion–reaction problem

We will next illustrate the IMEX version of RKC mentioned in Remark 2.4. For this purpose, we

consider a two-component, 3D advection–diffusion–reaction problem of the form

ut þ a1ux þ a2uy þ a3uz ¼ dDuþ f ðuÞ: ð5:3Þ

The velocities ak are given scalars, d is a given constant diffusion coefficient, u ¼ ½u1; u2�T, and f ðuÞ is a stiff,

nonlinear reaction term with components

f1ðuÞ ¼ �k2u1u2 þ k1u22; f2ðuÞ ¼ �k1u22 þ k2u1u2;

where k1; k2 denote given positive constants.
As space domain we take the unit cube, as initial time t ¼ 0 and as end time for output t ¼ 1. Due to the

stiff reaction term positivity is essential for this problem since negative solution values (wiggles) can easily

result in instability or breakdown of the modified Newton iteration in stiff reaction computations. In spite

of their simplicity, the chosen reaction terms reveal this.

To sketch the solution behaviour, we first consider the case d ¼ 0 as in [3]. Solutions then can be in-

terpreted as solutions of the reaction part along characteristics of the advection operator. The reaction part

has the general solution

u1ðtÞ ¼
s0

k1 þ k2

k1ð1� aÞ þ ðk1 þ k2Þae�s0k2t

1� aþ ae�s0k2t
; u2ðtÞ ¼ s0 � u1ðtÞ; ð5:4Þ

where a ¼ ððk1 þ k2Þu1ð0Þ � s0k1Þ=s0k2 and s0 ¼ u1ðtÞ þ u2ðtÞ which is constant in time. We choose

u1ð0Þ ¼ 0, u2ð0Þ ¼ s0 and introduce stiffness by putting k1 ¼ k2 ¼ k � 1. Component u1ðtÞ then very rapidly

increases from 0 to s0=2 and likewise u2ðtÞ rapidly decreases from s0 to s0=2. After the transient, the stiff

eigenvalue of the reaction Jacobian is close to �ks0 (the other eigenvalue is equal to zero). In the remainder,

we put k ¼ 106.

For the ak and pure advection solution we choose, following [3],

a1 ¼ p
ffiffiffi
2

p
ðy þ z� 1Þ; a2 ¼ �p

ffiffiffi
2

p
ðx� 1=2Þ; a3 ¼ a2;

uadvðx; y; z; tÞ ¼ exp
�
� 80 xð

h
� rðtÞÞ2 þ yð � sðtÞÞ2 þ zð � sðtÞÞ2

i�
;

ð5:5Þ



Table 3

Problem (5.3) with d ¼ 10�6

Tol ¼ 10�3 Steps (rej) F-evals smax L2-error

h ¼ 2:010�2 539 (1) 1080 2 0.26	 10�2

h ¼ 10�2 1048 (1) 2098 2 0.47	 10�3

CFL condition added to step size control.
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where rðtÞ ¼ ð2þ sinð2ptÞÞ=4 and sðtÞ ¼ ð4þ
ffiffiffi
2

p
cosð2ptÞÞ=8. These ak define a rotation with period one

along the characteristics (e.g., ellipses in the plane y ¼ z) and the profile can be visualized as a 3D plume

with highest values equal to one along the curves defined by rðtÞ and sðtÞ. As solution uðx; y; z; tÞ for the
advection–reaction problem we thus have (5.4) with s0 replaced by uadvðx; y; z; tÞ, getting zero as initial

function for u1 and the initial profile from (5.5) as initial function for u2. Both u1 and u2 will rapidly ap-
proach uadvðx; y; z; tÞ=2 and after the transient the solution changes in time only by advective transport.

The numerical tests have been carried out with d > 0. Then no exact solution is known, but for d very

small the behaviour will be alike. As initial values we have used the initial values from the advection–re-

action solution and these initial values were also used to prescribe Dirichlet boundary values for t 2 ½0; 1�.
For space discretization, we have used the same approach as for problem (5.1), except that here the

third-order upwind-biased advection scheme has been provided with flux limiting to prevent unwanted

negative solutions. We have used the max–min limiter from [8] (see also [7, Section 3.1.1]). The spatial

discretization thus results in an ODE system of type (2.9) where FE contains the advection–diffusion terms
and FI the reactions. Due to the limiting the function FE is strongly nonlinear, but since FE is treated ex-

plicitly this renders no problem.

The IMEX-RKC formula (2.10) has been implemented in the variable step size solver briefly discussed in

the beginning of Section 5 (see also [18]). This solver has been applied in precisely the same way as the

explicit solver was applied to problem (5.1) (cases (i) and (ii) described in the beginning of Section 5). The

main difference is that here also implicit reaction computations are to be performed. For the current

problem, these implicit computations take about 1/3 of the total CPU time. Recall that these implicit

computations are decoupled over the space grid and hence can be dealt with by a standard modified
Newton process as is customary in stiff ODE computations.

5.2.1. Test results

Table 3 contains results for the diffusion coefficient d ¼ 10�6, thus numerically mimicking the advection–

reaction case with d ¼ 0. The data in the table is similar to the data given in Tables 1 and 2, with as L2-error

the full error with respect to the exact advection–reaction solution. Because we are numerically dealing with

advection–reaction the CFL stability step size adjustment of Remark 4.3 has been used rather than the oval

condition. Obeying the available CFL condition is advocated to avoid significant negative values which can
ruin the integration process. As advocated in Remark 4.3, the number of stages s has been taken equal to 2

so that according to (2.10) the integration formula applied here is just the following IMEX form of the

explicit trapezoidal rule, 6

W1 ¼ wn þ sFEðtn;wnÞ þ sFIðtnþ1;W1Þ;
wnþ1 ¼ 1

2
ðwn þ W1Þ þ 1

2
sFEðtnþ1;W1Þ � 1

2
sFIðtn;wnÞ þ sFIðtnþ1;wnþ1Þ:

All runs were successful. The results in the table are for the local error tolerance Tol ¼ 10�3. The tolerance

values 10�1, 10�2 gave nearly the same results. Apparently, most of the time the CFL condition overrules
6 This formula is not the most efficient IMEX extension of the trapezoidal rule. For the current illustration, it suffices however.
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the local error control. Note that the CFL condition restricts the step size s to s6 0:87h=ð2p
ffiffiffi
2

p
Þ. With a

constant step size this would have resulted in 511 and 1022 steps, respectively. The solver requires a few

more steps due to the initial transient phase. The L2-error is mainly spatial.
Table 4 contains results for the diffusion coefficient values d ¼ 10�1; 10�2; 10�3 obtained on the

100	 100	 100 grid for Tol ¼ 10�3 (L2-errors cannot be given now and the comments also apply to

Tol ¼ 10�1; 10�2 and/or the 50	 50	 50 grid). We have applied the RKC-IMEX solver with the oval

condition imposed on the local error control, as in Section 5.1. All runs were completed successfully. Note

that with d ¼ 10�3 we come close to the advection–reaction data in Table 3, telling us that the oval con-

dition does a fairly good job here.

Next we have repeated the tests of Table 4 on the fly without any protection for instabilities due to

advection and thus only relying on step size control based solely on the local error estimate and with s
sufficiently large to satisfy (4.2). These integrations failed due to significant negative values, resulting in

Newton divergence and even overflow within a single integration step. They confirm that with the com-

bination of advection terms and stiff reactions great care must be exercised with step control stability based

solely on a local error estimate. In this regard, it is clear that the oval condition offers more robustness.

After a simple tentative negativity test was added to the step size control, all these on the fly runs became

successful too, see Table 5. The negativity test was carried out at all stages and allows step rejection.

Negativity was concluded when a stage component came below )10�10, which in the current situation is

small enough to signal negativity timely and large enough to avoid interference with the machine precision.
This results in step rejection and halving the current step size. Also the maximal growth factor for s was

lowered from 10 to 2 for safety. In Table 5, only the accepted steps with the associated numbers of function

evaluations have been listed in view of the preliminary character of the negativity test. In terms of CPU time

these tentative on the fly runs compare with the oval runs of Table 4, which certainly is an asset of the oval

condition. Finally, we note that resetting negative values to zero was not used since this would interfere

with the mass balance.

In a sequel to this paper, we plan to upgrade the current test version of the IMEX solver to a software

tool providing the same level of robustness and reliability as the explicit solver from [16] designed for pure
diffusion problems. Tables 3–5 clearly indicate that such an upgrade will result in an efficient and reliable

advection–diffusion–reaction solver.
Table 4

Problem (5.3)

Tol ¼ 10�3 Steps (rej) F-evals smax

d ¼ 10�1 269 (1) 3442 14

d ¼ 10�2 678 (1) 2658 4

d ¼ 10�3 1151 (1) 2304 2

Oval condition added to step size control.

Table 5

Problem (5.3)

Tol ¼ 10�3 Steps F-evals smax CPUfly/CPUoval

d ¼ 10�1 274 2672 44 1.13

d ¼ 10�2 230 1236 9 0.76

d ¼ 10�3 372 1270 4 0.86

On the fly integration with negativity test. Only accepted steps have been counted in view of the preliminary character of the

negativity test.
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6. Concluding remarks

In this paper, we have demonstrated how the explicit s-stage RKC method originally proposed for
diffusion problems [6] can be adjusted for advection–diffusion problems by simply resetting the damping

parameter �. The method then can efficiently integrate with high order upwind CFL limits near 1 and no

limitation on s to cope with (moderately stiff) diffusion terms. For s ¼ 2, the method is just the explicit

trapezoidal rule which we advocate for pure advection problems. Hence the scope of the explicit method

ranges from diffusion-dominated to advection-dominated. Together with the IMEX extension from [18] to

include severely stiff reaction terms, we thus have got a new method suitable for integrating a wide class of

advection–diffusion–reaction problems. An attractive feature is that the advection–diffusion computations

are explicit and that the reaction computations are decoupled over the space grid.
Finding critical time step sizes for advection–diffusion problems for use in actual solvers is a stability

problem on its own. For the RKC method, we have demonstrated the geometric approach of [19,20], using

the oval condition. This condition clearly enhances robustness, but the resulting step size values can be too

restrictive. A possible alternative is improved step control stability [5,14], tuned for advection–diffusion–

reaction problems. With the obtained experience in mind, in the near future we plan to upgrade the current

test version of the IMEX solver to a validated and mature piece of software, similar as the existing explicit

RKC code [16].
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